時間過得很快,不知不覺到了十月份,不知道大家高數複習的如何了。已經到了衝刺階段,複習備考更要找準重點,查漏補缺。這份“高數常考題型盤點”請收好!
常考題型
►向量代數與空間解析幾何
1、理解向量的概念及其表示。
2、掌握向量的運算(線性運算、數量積、向量積、混合積),了解兩個向量垂直、平行的條件;掌握單位向量、方向數與方向餘弦、向量的坐標表達式以及用坐標表達式進行向量運算的方法。
3、掌握平麵方程和直線方程及其求法,會利用平麵直線的相互關係解決有關問題。
4、理解曲麵方程的概念,了解常用二次曲麵的方程及其圖形,會求以坐標軸為旋轉軸的旋轉曲麵及母線平行於坐標軸的柱麵方程。
5、了解空間曲線的參數方程和一般方程;了解空間曲線在坐標平麵上的投影,並會求其方程。
►微分方程
1.求典型類型的一階微分方程的通解或特解:這類問題首先是判別方程類型,當然,有些方程不直接屬於我們學過的類型,此時常用的方法是將x與y對調或作適當的變量代換,把原方程化為我們學過的類型;
2.求解可降階方程;
3.求線性常係數齊次和非齊次方程的特解或通解;
4.根據實際問題或給定的條件建立微分方程並求解;
►無窮級數
1.判定數項級數的收斂、發散、絕對收斂、條件收斂;
2.求冪級數的收斂半徑,收斂域;
3.求冪級數的和函數或求數項級數的和;
4.將函數展開為冪級數(包括寫出收斂域);
5.將函數展開為傅立葉級數,或已給出傅立葉級數,要確定其在某點的和(通常要用狄裏克雷定理);
►多元函數的積分學
1.二重、三重積分在各種坐標下的計算,累次積分交換次序;
2.第一型曲線積分、曲麵積分計算;
3.第二型(對坐標)曲線積分的計算,格林公式,斯托克斯公式及其應用;
4.第二型(對坐標)曲麵積分的計算,高斯公式及其應用;
5.梯度、散度、旋度的綜合計算;
6.重積分,線麵積分應用;求麵積,體積,重量,重心,引力,變力作功等。
►多元函數的微分學
1.判定一個二元函數在一點是否連續,偏導數是否存在、是否可微,偏導數是否連續;
2.求多元函數(特別是含有抽象函數)的一階、二階偏導數,求隱函數的一階、二階偏導數;
3.求二元、三元函數的方向導數和梯度;
4.求曲麵的切平麵和法線,求空間曲線的切線與法平麵,該類型題是多元函數的微分學與前麵向量代數與空間解析幾何的綜合題,應結合起來複習;
5.多元函數的極值或條件極值在幾何、物理與經濟上的應用題;
6.求一個二元連續函數在一個有界平麵區域上的最大值和最小值。
►一元函數積分學
1.計算不定積分、定積分及廣義積分;
2.關於變上限積分的題:如求導、求極限等;
3.有關積分中值定理和積分性質的證明題;
定積分應用題:
計算麵積,旋轉體體積,平麵曲線弧長,旋轉麵麵積,壓力,引力,變力作功等;
綜合性試題。
向量代數和空間解析幾何
計算題:
1.求向量的數量積,向量積及混合積;
2.求直線方程,平麵方程;
3.判定平麵與直線間平行、垂直的關係,求夾角;
4.建立旋轉麵的方程;
與多元函數微分學在幾何上的應用或與線性代數相關聯的題目。
►一元函數微分學
1.求給定函數的導數與微分(包括高階導數),隱函數和由參數方程所確定的函數求導,特別是分段函數和帶有絕對值的函數可導性的討論;
2.利用洛比達法則求不定式極限;
3.討論函數極值,方程的根,證明函數不等式;
4.利用羅爾定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理證明有關命題,如“證明在開區間內至少存在一點滿足……”,此類問題證明經常需要構造輔助函數;
5.幾何、物理、經濟等方麵的最大值、最小值應用問題,解這類問題,主要是確定目標函數和約束條件,判定所討論區間;
6.利用導數研究函數性態和描繪函數圖形,求曲線漸近線。
►函數、極限與鏈接
1.求分段函數的複合函數;
2.求極限或已知極限確定原式中的常數;
3.討論函數的連續性,判斷間斷點的類型;
4.無窮小階的比較;
5.討論連續函數在給定區間上零點的個數,或確定方程在給定區間上有無實根。
這一部分更多的會以選擇題,填空題,或者作為構成大題的一個部件來考核,複習的關鍵是要對這些概念有本質的理解,在此基礎上找習題強化。
① 凡本站注明“稿件來源:beplay2网页登录”的所有文字、圖片和音視頻稿件,版權均屬本網所有,任何媒體、網站或個人未經本網協議授權不得轉載、鏈接、轉貼或以其他方式複製發表。已經本站協議授權的媒體、網站,在下載使用時必須注明“稿件來源:beplay2网页登录”,違者本站將依法追究責任。
② 本站注明稿件來源為其他媒體的文/圖等稿件均為轉載稿,本站轉載出於非商業性的教育和科研之目的,並不意味著讚同其觀點或證實其內容的真實性。如轉載稿涉及版權等問題,請作者在兩周內速來電或來函聯係。