清華大學自動化係戴瓊海院士、吳嘉敏助理教授與電子工程係方璐副教授、喬飛副研究員聯合攻關,研發出超高速光電模擬芯片,算力達到目前高性能商用芯片的3000餘倍。相關成果近日以“高速視覺任務中的純模擬光電芯片”為題,以長文形式發表在《自然》期刊上。如果用交通工具的運行時間來類比芯片中信息流計算的時間,那麼這枚芯片的出現,相當於將京廣高鐵8小時的運行時間縮短到8秒鍾。
這是一種“掙脫”摩爾定律的全新計算架構。1965年,英特爾創始人之一戈登·摩爾提出影響芯片行業半個多世紀的“摩爾定律”:預言每隔約兩年,集成電路可容納的晶體管數目便增加一倍。半導體領域按摩爾定律繁榮發展了數十年,“芯片”,成為人類邁入智能時代的重要引擎。然而隨著晶體管尺寸接近物理極限,近十年內摩爾定律已放緩甚至麵臨失效。如何構建新一代計算架構,建立人工智能時代的芯片“新”秩序,成為當前國際社會高度關注的前沿熱點。
作為人類已知的宇宙中最快速度之一,許多超高速物理領域都少不了光的身影。然而科學家們用光來做計算,並不是一件容易的事。當計算載體從電變為光,就需要利用光傳播中攜帶的信息進行計算。數年來海內外知名團隊相繼提出多種設計,但要替代現有電子器件實現係統級應用,仍麵臨許多國際難題:一是如何在一枚芯片上集成大規模的計算單元,並且約束誤差累計程度;二是如何實現高速高效的片上非線性;三是為兼容目前以電子信號為主體的信息社會,如何提供光計算與電子信號計算的高效接口。如果不能解決這幾個問題,光計算就難以真正替代當前的電子芯片,在信息社會大展身手。
在這枚小小的芯片中,清華大學攻關團隊創造性地提出了光電深度融合的計算框架。從最本質的物理原理出發,結合了基於電磁波空間傳播的光計算,與基於基爾霍夫定律的純模擬電子計算,“掙脫”傳統芯片架構中數據轉換速度、精度與功耗相互製約的物理瓶頸,在一枚芯片上突破大規模計算單元集成、高效非線性、高速光電接口三個國際難題。
圖片來源:清華大學新聞網
實測表現下,光電融合芯片的係統級算力較現有的高性能芯片架構提升了數千倍。然而,如此驚人的算力,還隻是這枚芯片諸多優勢的其中之一。
在研發團隊演示的智能視覺任務和交通場景計算中,光電融合芯片的係統級能效(單位能量可進行的運算數)實測達到了74.8 Peta-OPS/W,是現有高性能芯片的400萬餘倍。形象地說,原本供現有芯片工作一小時的電量,可供它工作500多年。
目前限製芯片集成極限的一個關鍵因素,就是過高密度帶來的散熱難題。而在超低功耗下運行的光電融合芯片將有助於大幅度改善芯片發熱問題,為芯片的未來設計帶來全方位突破。
更進一步,該芯片光學部分的加工最小線寬僅采用百納米級,而電路部分僅采用180nm CMOS工藝,已取得比7納米製程的高性能芯片多個數量級的性能提升。與此同時,其所使用的材料簡單易得,造價僅為後者的幾十分之一。
科幻電影《流浪地球》中,人工智能係統Moss僅幾秒鍾便可遍曆所有拯救地球的方案。在清華大學團隊提出的超高性能光電芯片下,“未來計算機”的誕生似乎已不再遙遠。光電融合的新型架構,不僅開辟出這項未來技術通往日常生活的一條新路徑,還對量子計算、存內計算等其他未來高效能技術與當前電子信息係統的融合深有啟發。
論文通訊作者之一戴瓊海院士介紹道:“開發出人工智能時代的全新計算架構是一座高峰,而將新架構真正落地到現實生活,解決國計民生的重大需求,是更重要的攻關,也是我們的責任。”《自然》期刊特邀發表的該研究專題評述也指出,“或許這枚芯片的出現,會讓新一代計算架構,比預想中早得多地進入日常生活。”
① 凡本站注明“稿件來源:beplay2網頁登錄”的所有文字、圖片和音視頻稿件,版權均屬本網所有,任何媒體、網站或個人未經本網協議授權不得轉載、鏈接、轉貼或以其他方式複製發表。已經本站協議授權的媒體、網站,在下載使用時必須注明“稿件來源:beplay2網頁登錄”,違者本站將依法追究責任。
② 本站注明稿件來源為其他媒體的文/圖等稿件均為轉載稿,本站轉載出於非商業性的教育和科研之目的,並不意味著讚同其觀點或證實其內容的真實性。如轉載稿涉及版權等問題,請作者在兩周內速來電或來函聯係。