中國科學技術大學潘建偉、陸朝陽、陳明城教授等利用基於自主研發的Plasmonium(等離子體躍遷型)超導高非簡諧性光學諧振器陣列,實現了光子間的非線性相互作用,並進一步在此係統中構建出作用於光子的等效磁場以構造人工規範場,在國際上首次實現了光子的分數量子反常霍爾態。這是利用“自底而上”的量子模擬方法進行量子物態和量子計算研究的重要進展。相關成果以長文的形式於北京時間5月3日發表在國際學術期刊《科學》上。5月6日,中國科學院在北京召開成果新聞發布會。
圖1:成果示意圖。16個非線性“光子盒”陣列囚禁的微波光子強相互作用形成分數量子反常霍爾態(注:“光子盒”的名字最早來自1930年愛因斯坦和波爾爭論中提出的思想實驗)。
霍爾效應是指當電流通過置於磁場中的材料時,電子受到洛倫茲力的作用,在材料內部產生垂直於電流和磁場方向的電壓。這個效應由美國科學家霍爾在1879年發現,並被廣泛應用於電磁感測領域。1980年,德國科學家馮·克利欽發現在極低溫和強磁場條件下,霍爾效應出現整數量子化的電導率平台。這一新現象超出了經典物理學的描述,被稱為整數量子霍爾效應,它為精確測量電阻提供了標準。1981年,美籍華裔科學家崔琦和德國科學家施特默發現了分數量子霍爾效應。整數和分數量子霍爾效應的發現分別獲得1985年和1998年諾貝爾物理學獎。
此後四十餘年間,分數量子霍爾效應尤其受到了廣泛的關注。由於最低朗道能級簡並電子的相互作用,分數量子霍爾態展現出非平庸的多體糾纏,對其研究所衍生出的拓撲序、複合費米子等理論成果逐漸成為多體物理學的基本模型。與此同時,分數量子霍爾態可激發出局域的準粒子,這種準粒子具有奇異的分數統計和拓撲保護性質,有望成為拓撲量子計算的載體。
反常霍爾效應是指無需外部磁場的情況下觀測到相關效應。2013年,中國研究團隊觀測到整數量子反常霍爾效應。2023年,美國和中國的研究團隊分別獨立在雙層轉角碲化鉬中觀測到分數量子反常霍爾效應。
傳統的量子霍爾效應實驗研究采用“自頂而下”的方式,即在特定材料的基礎上,利用該材料已有的結構和性質實現製備量子霍爾態。通常情況下,需要極低溫環境、極高的二維材料純淨度和極強的磁場,對實驗要求較為苛刻。此外,傳統“自頂而下”的方法難以對係統微觀量子態進行單點位獨立地操控和測量,一定程度上限製了其在量子信息科學中的應用。
圖2:在非線性光子係統中構建人工規範場,實現光子的分數量子霍爾態。
與之相對地,人工搭建的量子係統結構清晰,靈活可控,是一種“自底而上”研究複雜量子物態的新範式。其優勢包括:無需外磁場,通過變換耦合形式即可構造出等效人工規範場;通過對係統進行高精度可尋址的操控,可實現對高集成度量子係統微觀性質的全麵測量,並加以進一步可控的利用。這類技術被稱為量子模擬,是“第二次量子革命”的重要內容,有望在近期應用於模擬經典計算困難的量子係統並達到“量子計算優越性”。
圖3:觀察到分數量子霍爾態的拓撲關聯和拓撲光子流
此前,國際上已經基於其開展了一些合成拓撲物態、研究拓撲性質的量子模擬工作。然而,由於以往係統中耦合形式和非線性強度的限製,人們一直未能在二維晶格中為光子構建人工規範場。
為解決這一重大挑戰,團隊在國際上自主研發並命名了一種新型超導量子比特Plasmonium,打破了目前主流的Transmon(傳輸子型)量子比特相幹性與非簡諧性之間的製約,用更高的非簡諧性提供了光子間更強的排斥作用。進一步,團隊通過交流耦合的方式構造出作用於光子的等效磁場,使光子繞晶格的流動可積累Berry(貝裏)相位,解決了實現光子分數量子反常霍爾效應的兩個關鍵難題。同時,這樣的人造係統具有可尋址、單點位獨立控製和讀取,以及可編程性強的優勢,為實驗觀測和操縱提供了新的手段。
圖4:觀察到準粒子的不可壓縮和分數霍爾電導
在該項工作中,研究人員觀測到了分數量子霍爾態獨有的拓撲關聯性質,驗證了該係統的分數霍爾電導。同時,他們通過引入局域勢場的方法,跟蹤了準粒子的產生過程,證實了準粒子的不可壓縮性質。
《科學》雜誌審稿人高度評價這一工作,認為這一工作“是利用相互作用光子進行量子模擬的重大進展”(a significant advance in quantum simulation with interacting photons),“一種新穎的局域單點控製和自底而上的途徑”(a novel form of local control and bottom-up approach),“有潛力為實現非阿貝爾拓撲態開辟一條新的途徑,這是利用二維電子氣材料的傳統方法很難探測的”(potentially open new pathways for realizing non-Abelian topological states, which have been extremely challenging to probe in two-dimensional electron gases)。
諾貝爾物理學獎得主Frank Wilczek評價,這種“自底而上”、用人造原子構建哈密頓量的途徑是一個“非常有前途的想法”(a very promising idea),這是一個令人印象深刻的實驗(a very impressive experiment),為基於任意子的量子信息處理邁出了重要一步(a remarkable step)。沃爾夫獎獲得者Peter Zoller評價,“這在科學和技術上都是一項傑出的成就”(a remarkable achievement, both scientifically and technically,),“實現這樣的目標是多年來全球頂級實驗室競爭的量子模擬的聖杯之一”(one of the holy grails of quantum simulation)。
本文第一作者為陳明城、劉豐銘和王粲。該研究工作得到了科技部、國家自然科學基金委、中國科學院、安徽省和上海市等的支持。
論文鏈接:
https://www.science.org/doi/10.1126/science.ado3912
① 凡本站注明“稿件來源:beplay2網頁登錄”的所有文字、圖片和音視頻稿件,版權均屬本網所有,任何媒體、網站或個人未經本網協議授權不得轉載、鏈接、轉貼或以其他方式複製發表。已經本站協議授權的媒體、網站,在下載使用時必須注明“稿件來源:beplay2網頁登錄”,違者本站將依法追究責任。
② 本站注明稿件來源為其他媒體的文/圖等稿件均為轉載稿,本站轉載出於非商業性的教育和科研之目的,並不意味著讚同其觀點或證實其內容的真實性。如轉載稿涉及版權等問題,請作者在兩周內速來電或來函聯係。